Oscillation Theory and Numerical Solution of Fourth Order Sturm-Liouville Problems
نویسندگان
چکیده
A shooting method is developed to approximate the eigenvalues and eigenfunctions of a 4th order Sturm-Liouville problem. The main tool is a miss-distance function M(), which counts the number of eigenvalues less than. The method approximates the coeecients of the diierential equation by piecewise-constant functions, which enables an exact solution to be found on each mesh interval. In order to calculate M() for the approximate problem, certain oscillation numbers NL and NR must be computed. These consist of sums of nullities (or rank deeciencies) of 22 matrices obtained from the solutions of the approximate diierential equation. Although these solutions can be found explicitly, the calculation of NL and NR is nontrivial, and is obtained by using certain properties of M().
منابع مشابه
Existence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملOscillation Theory and Numerical Solution of Sixth Order Sturm-liouville Problems
Following earlier work on fourth order problems, we develop a shooting method to approximate the eigenvalues of 6th order Sturm-Liouville problems using a spectral function N() which counts the number of eigenvalues less than. This requires anòscillation' count obtained from certain solutions of the diierential equation, and we develop explicit algorithms for obtaining the exact oscillation cou...
متن کاملNumerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions
In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994